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We report electrical conductivities for a hydrogen plasma at temperatures between a few tenths to a few tens
of electron volts and densities ranging from 0.3 to 3 g/cm3. The ac conductivities were determined within the
Kubo-Greenwood formulation based on eigenstates from a finite-temperature density functional calculation at
selected time steps along a lengthy molecular-dynamics~MD! simulation trajectory. Density functional, tight-
binding, and effective pair potentials were employed in the MD simulations for samples of 50 to 250 atoms
within a periodically replicated reference cell. We compare with other techniques and discuss trends with
density and temperature. Good agreement results at the higher temperatures and densities with generalized
Ziman forms.@S1063-651X~96!06109-0#

PACS number~s!: 52.25.2b, 61.20.Ja, 05.60.1w

I. INTRODUCTION

Electrical conductivities play a vital role in the modeling
of dense plasmas and have engaged the interest of theoreti-
cians and experimentalists alike for many decades@1–4#.
They have received renewed interest owing to recent shock
experiments@5#, showing large changes over small pressure
regimes, and to theoretical predictions of plasma phase tran-
sitions @6,7#, and of new facets in the equations of state
@8–11#. Most of the current attention has centered at moder-
ate to high densities and fairly low temperatures.

A variety of models have arisen to treat electrical conduc-
tivities of dense plasmas. One of the earliest invoked a two-
component plasma~TCP! scheme@12# with a classical treat-
ment of the electrons and ions. Many TCP thermodynamical
properties have simple forms in terms of various plasma cou-
pling coefficients, expressed as the ratio of the Coulombic to
the kinetic energy. For example, in terms of the temperature
T and number density of the ionsni , the ion coupling coef-
ficient G has the formZe2/(r skBT) with the dimensionless
ion sphere radius parameterr s given by as /aB , where
as5@3/(4pni)#

1/3 andaB , the Bohr radius. The Fermi tem-
perature@TF5(\2/2me)(3p2ne)

2/3#, related to the electron
number densityne and massme , provides another useful
descriptive quantity. The ratioQ5T/TF demarcates the re-
gime between quantal and classical treatments of the elec-
trons.

Various improvements have since been instigated to in-
clude quantum-mechanical effects. Some concentrate on
solving the basic kinetic equations@13,14#, while others em-
ploy a density response formalism~ITMY ! @15# or more
elaborate integral equation forms@16#. In this same vein,
another class of models focuses on Green’s function formu-
lations, based either on linear response@7# or memory func-
tion @17# approaches. Still other treatments have evolved

from extensions of the Ziman formula, which strictly applies
to degenerate, strongly coupled plasmas. These models treat
a representative atom at various levels of sophistication from
average atom@18# to elaborate density functional schemes
@19,20#. More recent investigations have moved beyond a
single site to treat a reference cell with a large number of
fully interacting atoms, evolving in time. All the electrons in
the reference cell receive an equal quantum mechanical treat-
ment, and the full dynamics of both the electrons and ions
enter. Both quantum Monte Carlo@6,21# and molecular-
dynamics @22–24# versions have recently appeared. The
above presentation has only briefly sketched the various
methods since a detailed exposition of the historical devel-
opment and various physical approaches appear in earlier
references@24#.

In this paper we employ a quantum molecular-dynamics
~QMD! approach to determine the electrical conductivity in a
hot, dense plasma. The technique has considerable versatility
and has been applied already to modeling other aspects of
this medium@24#. The approach accounts for a wide variety
of dynamical processes such as ionization-recombination,
dissociation-bonding, and detachment-attachment. In addi-
tion, the properties of alkali-metal liquids@25#, the metalli-
zation of rare gas solids@26#, the development of tight-
binding models@27# for dense H, line broadening of impurity
atoms in a H plasma@28#, and isotopic hydrogenic mixtures
@29# have all received treatment with the technique. We be-
gin with a brief description of the QMD method and conduc-
tivity models in Sec. II and present results and discussion in
Sec. III. All of our calculations lie in the strongly coupled
(G> 1! and electronically degenerate (Q< 1! regimes. In
addition, we concentrate on an intermediate range of densi-
ties ~0.3–3 g/cm3) and temperatures~0.5–13.6 eV! that con-
nect the fully classical to the fully quantum-mechanical re-
gions. These complement the calculations of the Ju¨lich group
@23# at generally lower temperatures.

II. FORMALISM

For our applications, we apply a quantum molecular-
dynamics approach to simulate the conditions within a dense
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hydrogen plasma and the standard Kubo-Greenwood formu-
lation to extract the electrical conductivity. Since the QMD
techniques have received extensive treatment elsewhere@24#,
we briefly summarize the salient features of the method and
focus on conductivity.

A. Simulations

The basic unit of the molecular-dynamics simulation con-
sists of a cubic cell of lengthL containing equal numbers of
electrons and protons (ne5np5N). A periodic replication of
this cell throughout space represents the fluid nature of the
plasma. We invoke the Born-Oppenheimer approximation in
which the nuclear and electronic motions separate and treat
the speedy electrons quantum mechanically and the sluggish
nuclei classically. In this case, a simple two-step procedure
suffices to evolve the system in time. First, at a given time
step for a fixed configuration of the nuclei, we solve the
ne-electron Schro¨dinger equation for the quantum mechani-
cal force Fa on each ion. Second, the ions are advanced
temporally by solving the classical equations of motion

ma r̈a5Fa , ~1!

wherema is the mass of theath nuclei andr̈a is its accel-
eration. Repeating the two-step process, we evolve the sys-
tem in time by determining positions, velocities, forces, and
electronic properties at each step.

1. Electronic structure

The first step of the simulation involves a calculation of
the quantum-mechanical force on the ions. We instigate this
calculation by solving the Schro¨dinger equation forne elec-
trons andnp fixed ions within a periodically replicated ref-
erence cell, relying upon both density-functional~DF! and
tight-binding ~TB! methods.

The finite-temperature density-functional procedure
@31,32# provides the most accurate determination of the
forces. Minimizing the Mermin functionalV@c i # with re-
spect to variations of the density leads to a set of equations
for the electron orbitals of the Kohn-Sham form

@2 1
2¹21VEXT~r !1VH~r !1VXC~r !#c i~r !5e ic i~r !, ~2!

where VH is the Hartree term,VXC is the exchange-
correlation term, andVEXT is the interaction with an external
potential. All of these terms depend implicitly on the elec-
tron density with orbitals populated according to a Fermi-
Dirac distribution at the electron temperatureTe . We operate
within the local density approximation~LDA ! with a free-
electron gas form for the exchange contribution and the
Perdew-Zunger parametrization@33#, based on the Ceperley-
Alder Monte Carlo calculations@34#, for the correlation con-
tribution. For hydrogen, the external field takes the simple
form of an electron interacting with the bare nuclei
((aur2Rau21). Solution of Eq.~2! yields the orbitals that
determine the value of the functionalV, from which the
forces on the ions arise from direct application of the spatial
gradient. In determining the forces, we generally assume lo-
cal thermodynamic equilibrium~LTE! with the electron and
ion temperatures equal (Te5Ti).

We solve the Kohn-Sham~KS! equations by first splitting
the one-electron orbitalc i into a product of a simple plane
wave in k and of a function periodic with respect to the
image cells. We further expand this cell-periodic function in
a plane-wave basis in terms of the reciprocal lattice vector
G. A matrix representation of the KS equations for a given
k vector comes from multiplying the left side of Eq.~2! by a
representative orbital and integrating over all spatial coordi-
nates. We truncate the plane-wave expansion at a finite cut-
off valueEcut(5

1
2uGcutu2) and successively increaseGcut un-

til convergence in certain properties is attained. The
truncation of the plane-wave expansion produces a matrix of
finite size, which we diagonalize by iterative techniques@24#
to produce a set ofns eigenstates.

Even for hydrogen, the accurate treatment of the cusp
condition at the nuclei necessitates the use of very large basis
sets. To reduce the size of the basis, we have employed the
Troullier-Martins pseudopotential@35# extended to nonlocal
form by the Kleinman-Bylander prescription@36#. Using a
small cutoff radius (r c), typically of the order ofr s , affects
only slightly the basic properties while significantly reducing
the number of plane waves needed for convergence.

While the DF-LDA method described above allows a so-
phisticated treatment of the basic electron and ion interac-
tions, the computational time necessary to evolve long tra-
jectories for large samples of atoms becomes prohibitive.
Therefore, we have developed a semiempirical potential
based on a TB prescription@37,38#. In order to produce an
effective model of the hydrogenic medium, we must con-
struct a suitable representation of the TB matrix elements.
We begin with a two-function basis on each atomic site con-
sisting ofs ands8 orbitals. Fits to diatomic and bulk prop-
erties produce the desired functional forms for these matrix
elements. The details of the construction and table of param-
eters for our hydrogenic TBss8 potential appear elsewhere
@27#. Diagonalization of the TB matrix determines the elec-
tron orbitals. These orbitals in turn yield the total energy,
whose spatial derivative gives the force acting upon an ion.
We introduce temperature effects by populating the orbitals
according to a Fermi-Dirac distribution at the ion tempera-
tureTi . We also model the dense media by a simple Moliere
pair potential@39#, based on the Thomas-Fermi electronic
screening function. Since the TBss8 contains nop-wave
contribution and the Moliere has no electronic component at
all, these two methods only apply for producing the dynami-
cal configurations of the ions. Neither can directly produce
electrical conductivities.

2. Molecular dynamics

All of our simulations employ constant density and vol-
ume. In order to preserve constant density within the cell, we
also apply periodic boundary conditions in which a particle
exiting the cell through one side is replaced by one entering
on the opposite side. We consider both microcanonical and
isokinetic ensembles. For the isokinetic ensemble, we fix the
temperature at a prescribed valueTi and maintain this bal-
ance through a simple velocity scaling of the ratio ofTi to
the average kinetic temperatureTK . We start the sample in a
high symmetry state such as body-center cubic~bcc! and
associate with each nucleus a random velocity consistent
with a Maxwell-Boltzmann distribution atTi . Successive
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application of the velocity Verlet algorithm evolves the sys-
tem in time. The resulting collection of positions and veloci-
ties of the nuclei at each time step defines a trajectory. In
turn, Green-Kubo formulas, based on autocorrelation func-
tions, relate the trajectory information to microscopic prop-
erties of the system such as diffusion and viscosity. In addi-
tion, the pair correlation functiong(r ), which gives the
probability of finding a particle at a distancer from a refer-
ence particle@30#, provides another useful quantity that pro-
vides information on the nature of the fluid. Finally, since the
nuclei move according to the classical equations of motion,
we consider temperatures well above the regime in which the
zero-point motion (; 0.25 eV! becomes important.

B. Conductivities

The frequency-dependent electrical conductivity derived
from the Kubo-Greenwood formulation@37,38# has the form
~in a.u.!

s~v!5C(
i j

F@e i ,e j #uDi j u2d~e i2e j2v!, ~3!

whereC52p/V with V the atomic volume, andv is the
frequency. The other quantities include~1! the difference
between the Fermi-Dirac distributionsf 0 at a temperature
T,

F@e i ,e j #5@ f 0~e i !2 f 0~e j !#/v, ~4!

and ~2! the velocity dipole matrix element,

uDi j u25
1

3(a z^c i u¹auc j& z2. ~5!

Even though the system is assumed isotropic, the sum (a)
extends overx,y, and z in order to improve the statistics.
The quantitiese i andc i represent the energy and wave func-
tions for thei th KS orbital found from the diagonalization of
Eq. ~2!. The summation ini runs over all occupied states
while that in j covers only unoccupied states. An analogous
integral expression follows from the properties of the prod-
uct d function as

s~v!5cE F@E8,E#uD~E8uE!u2N~E8!N~E!dE, ~6!

where the density of states per unit energy per unit volume,

N~E!5V21(
i

d~E2e i !, ~7!

c5CV2, E85E1v, andD(E8uE) is the analogue of Eq.
~5! for a continuous range of energies. The integral spans all
occupied orbitals, in other words, up to the Fermi energy
eF . Finally, we define the dc conductivity assdc5s(0).

We evaluate the integral in Eq.~6! by partitioning into
energy bins of equal sizeDE and determining averaged
quantities within each bin from the discrete eigenstate calcu-
lations. Since thed function causess(v) to peak around
v, we can use Eq.~3! directly @23# and define an average
conductivity as

save~v!5
1

dvEv2dv/2

v1dv/2

s~v8!dv8 . ~8!

Substituting Eq.~3! into Eq. ~8! eliminates thed function
and yields a simple sum over the Fermi-Dirac distributions
and the dipole matrix elements. The two approaches give
results in excellent agreement for regimes relatively insensi-
tive to the choice ofDE anddv, respectively. The produc-
tion of only a finite number of eigenstates places a restriction
on the frequency range. We can obtain converged values of
s(v) only for v<uens2eFu since larger values ofv connect

to unoccupied excited statese i with i>ns .

III. RESULTS AND DISCUSSION

Having completed a summary of the basic procedures em-
ployed to determine the electronic structure, the molecular-
dynamics simulations, and the electrical conductivities, we
embark upon a detailed description of a hot, dense hydrogen
plasma. Before launching into the conductivity results, we
first present an analysis of the accuracy of the underlying
simulations.

A. Preliminaries

Since we employ parameters for these MD simulations
similar to those in a earlier study@24#, we simply summarize
the salient findings. The DF-LDA calculations employed a
pseudopotential withr c equal to 1 bohr forr s51 and of 1.4
bohr for r s51.4, 2, and 2.5. This choice, even for the highest
density treated, gave total energies within 10 mRy/atom of
the exact 1/r pseudopotential results. In order to assure simi-
lar accuracies in the forces, we take a plane-wave truncation
Ecut of 36~70! Ry for r s51.4~1.0!. The MD simulations gen-
erally use a time step (Dt) of 10–20 a.u. and a trajectory
length of the order of ps. This range of step size guarantees
the proper following of the fluctuations of various thermody-
namical properties, such as the total energy in the isokinetic
case, with between 15 and 20 time points within a wave-
length. The energy deviates by less than 1% over the entire
simulation with any drift confined to this narrow range.
Properties that depend on autocorrelation functions, such as
the diffusion coefficient, have accuracies on the order of a
few percent. Since the TB and Moliere approaches take far
less computational time per step, we have run these simula-
tions with much smaller time steps and longer trajectories,
yielding properties converged to better than 1%. For a de-
tailed analysis, we refer the reader to our earlier work@24#.
We defer the discussion of the accuracy of the conductivity
until the next section.

B. Electrical conductivity

We have performed calculations for electrical conductivi-
ties over a temperature range between 53103 and 1.53105

K ~0.5–13.6 eV! and a density regime of13 to 3 g/cm3

(r s5 1–2!. We begin with a discussion of various schemes
for calculatings as well as tests of accuracy, then describe
the general results, and conclude with a comparison to other
methods.
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1. Simulation schemes and tests

The basic calculation of the electrical conductivity pro-
ceeds along the following lines. First, we generate a trajec-
tory containing the positions of the particles for a collection
of time stepsnt . Second, for a selected subset of times
~snapshots!, we perform a DF-LDA electronic structure cal-
culation for the particle configurations and, from the KS or-
bitals and energies, we then generate the conductivity ac-
cording to Eqs. ~6! or ~8!. Third, the final electrical
conductivity becomes an average over this temporal subset.
Once the diffusion regime has been established, we usually
take between 10 and 40 snapshots in the conductivity aver-
age with the snapshots separated by at least the correlation
time ~1/e falloff in the velocity autocorrelation function!. We
designate the various schemes for calculatings(v) as
XX-YY where XX refers to the MD simulation technique
@density functional, tight-binding, or Moliere pair potential
~PP!#, and YY to the electronic structure method employed
in step 2, in all cases the density functional in the local
density approximation. In addition, since we treat extended
spatial systems, the DF-LDA calculations are generally con-
fined to theG point @k5 (2p/L) ~0,0,0!#. We have found
@24# that in certain temperature and density regimes the TB
and PP provide very good quality trajectories as demon-
strated by comparisons of dynamical and static properties
with the more accurate DF-LDA results. Since these tech-
niques consume far less computational time than the DF,
they allow more stringent tests of size effects and trajectory
parameters.

In order to gauge the efficacy of such mixed schemes, we
present a representative example in Fig. 1 in which we com-
pare the frequency-dependent conductivity for a density of
2.65 g/cm3 (r s51! and a temperature of 2.72 eV (G510! for
three schemes: DF-DF, TB-DF, and PP-DF, with 108 atoms
in a reference cell. The agreement remains good throughout
the whole frequency range. At the lowest frequencies, the
methods depart slightly with the DF-DF about 10% lower
than the other two approaches. The very low frequencies
sample a small region around the Fermi level, which depends

more critically on the actual dynamics technique employed.
We have observed similar behavior for a 64-atom sample. At
lower densities, the pair potential gives less satisfactory re-
sults while the tight binding provides sound trajectories
throughout the entire density-temperature regime studied.

One of the most important tests rests with the conver-
gence ofs(v) with the size of the sample. All the simula-
tions employ a single-pointk-space integration, which
should become more accurate as the number of atoms in the
reference cell increases. Since the density remains fixed, this
also tests the sensitivity to the volume of the cell,L3. In Fig.
2, we present a comparison ofs as a function of frequency
for r s51 andG 5 10 ~2.65 g/cm3; 2.72 eV! for 54, 64, 108,
128, and 250 atoms. The convergence goes slowly as a func-
tion of N until near the 100-atom level. This behavior stems
from a large band gap in the eigenspectrum of the smaller
samples for which finite temperature effects only barely
compensate. For the larger samples, the gap narrows, giving
rise to larger conductivities. This explanation also accounts
for the kink in theN564 results. At the lower frequencies,
the agreement between the 108- and 250-atom cases is on the
order of 15% and much better at higher frequencies. Such
findings hold over our range of densities and temperatures.

Ideally, we would like to perform a fullk-space integra-
tion for each choice ofN and L. However, this at present
remains outside the purview of our techniques and would be
prohibitive within any lengthy DF-LDA simulation. Still, in
addition to the test of cell size, we can also examine the
sensitivity with respect to specialk-space integration points,
which also reflects size effects. In Fig. 3, we present a com-
parison betweens(v) for an N5108 sample atr s51 and
G55 for integrations involving two distinctk points:
(2p/L)~0,0,0! and (2p/L)( 14,

1
4,

1
4!. The former represents the

G and the latter the Baldereschi@40# point. We note a 15%
difference at the lower frequencies. A consistent trend devel-
ops with the Baldereschi point result for 108 atoms moving
in the direction of the 250-atom sample at theG point. Since
most of the simulations employ a sample of 108 atoms, we

FIG. 1. Comparison of electrical conductivity as a function of
frequency for various simulation-structure models for H at rs51
andG510 for a sample of 108 atoms. PP-DF~solid line!, TB-DF
~dashed line!, and DF-DF~dot-dashed line!.

FIG. 2. Electrical conductivity as a function of frequency for
r s51 and G510 for different numbers of atoms (N)
(N554–250! in the reference cell. All cases employed the PP-DF
model. Legend:N 5 54 ~solid line!, 64 ~short-dashed line!, 108
~dot-dashed line!, 128 ~dotted line!, and 250~long-dashed line!.
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would judge at these densities that sample size effects may
account for an error on the order of 20%.

We have determined the dc conductivity by simple ex-
trapolation schemes. Such extrapolation becomes necessary
since the DF calculations produce ac conductivities only at
finite frequencies. The lowest frequency obtainable corre-
sponds to the smallest difference between the KS eigenener-
giese i . These differences, in turn, are set by the sample size
and the potential and dynamical models. We typically fit
s(v) with a low-order polynomial~third to fifth order! by a
standard least-squares technique and findsdc by an evalua-
tion atv50. Sensitivities to the type of fit generally remain
at the few percent level. The departure of the DF-DF ac
conductivities from the other two models at very low fre-
quencies implies that the dc conductivity in the TB-DF or
PP-DF may have additional error of approximately 15%.
Therefore, the dc conductivities in these latter two models at
N5108 may attain overall errors on the order of 25% . One
final note is in order. For all our error analysis, we have
employed the converged DF-DF model as the absolute.
However, systematic errors due to nonlocal electronic den-
sity effects, for example, remain outside of our analysis since
they would require more elaborate DF schemes. In addition,
we have based the conductivity calculations on an excited
manifold of quasiparticle states of the DF-LDA scheme. As
long as the integration covers a reasonably dense DOS, then
the approach produces reliable conductivities even though
some ambiguity may attach to the physical interpretation of
individual states.

2. MD results

We display in Fig. 4 and Table I a summary of our MD
simulations for the electrical conductivity. In the table, we
report dc conductivities found by extrapolatings(v) to zero
frequency. All calculations employed a sample of 108 atoms
and the TB-DF model for all cases withr s51.4 and 2 and the
PP-DF for r s51. As mentioned above, we performed sys-
tematic checks of these two models with the DF-DF at se-
lected values ofni and T. One general feature readily

emerges from the results. Namely, for a given density (r s),
the conductivity decreases with increasing temperature—the
general trend observed for a metal. In the most dense case
~2.65 g/cm3, r s51), the medium remains an atomic or com-
pletely dissociated fluid as seen from the plot of the pair-
correlation functions in Fig. 5. At the lower density of 1
g/cm3, the medium remains basically atomic until the lowest
temperature, where vestiges of a molecular peak begin to
appear as a kink around 1.4aB in the g(r ) of Fig. 6. The
lowest density of 0.33 g/cm3 retains also a purely atomic
quality due to the high temperature. Finally, the conductivity
does not behave as a simple function of plasma coupling
constant as evidenced by the results forG 5 10 in Table I,
wheres differs by an order of magnitude for three different
temperature-density points.

3. Comparisons

We begin with a comparison to two simple formulas, the
Spitzer and Mott. The Spitzer formula, which applies at high
T and low density, goes off scale for our regime, which lies

FIG. 3. Electrical conductivity as a function of frequency with
r s51 andG55 for different k-point integration schemes:G point
~solid line! and Baldereschi point~dashed line! for N5108 in the
PP-DF model.

FIG. 4. Electrical conductivity as a function of frequency for
two densities and various temperatures forN5108. Legend:~a!
r s51 ~PP-DF model! with G 5 2 ~solid line!, 5 ~dashed line!, 10
~dot-dashed line!, and 20~dotted line!; ~b! r s51.4 ~TB-DF model!
with G 5 5 ~solid line!, 10 ~dashed line!, 20 ~dot-dashed line!, and
40 ~dotted line!.
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at the opposite extremes. The Mott formula@41# represents a
simplification of the Kubo-Greenwood in Eq.~3! and relates
the dc electrical conductivity to the density-of-states~DOS!,
N , at the Fermi energy (eF) and to the average nearest-ion
separationr NN :

sdc~Mott!52.8853105r NNN ~eF!2, ~9!

with s, r NN , and N in units of (V cm! 21, bohr, and
~bohr3 hartree! 21, respectively. The DOS comes from the
DF-LDA calculation at each snapshot time step of the corre-
sponding MD simulation. An average over the snapshot val-
ues produces the final value just as in the full Kubo-
Greenwood case. Two basic approximations pertain:~1! the
dipole matrix element becomes simplyr NN /V in the
random-phase approximation, and~2! the DOS sharply peaks
around eF . These approximations make this form of the
Mott formula applicable mainly in the regime of high density
and low temperature. In the case of liquid carbon@42#, which

behaves as a weak conductor, the Mott expression yields
accurate conductivities. Our calculations, on the other hand,
have centered in a regime in which hydrogen becomes a
highly efficient conductor. Forr s51, we find the Mott ex-
pression yields conductivities about a factor of 5–7 too low
compared to the MD results forG between 5 and 20. For the
lower density region (r s51.4!, sdc ~Mott! behaves only
slightly better with the MD conductivities about four times
higher ~5 <G< 40!. Therefore, in this case, the Mott form
gives only an order-of-magnitude estimate ofsdc.

In Table II, we compare our MD simulations for the dc
electrical conductivity with the thermodynamical Green’s
function approach of Berkovsky@17# and the generalized Zi-
man formulation within DF theory of Perrot and Dharma-
wardana@20#. The latter employs both the strong isolated
~SIS! and the strong multiple~SMS! scattering forms. Only
the MD results explicitly account for ionic fluctuations. For a
high density~2.62 g/cm3) and temperature~2.72–13.6 eV!,
we obtain very good agreement with these other two ap-
proaches. In fact, the MD results lie bounded within the SIS
and SMS over the whole range ofT. The uncertainties in
sdc prevent distinguishing between the two scattering models
although a trend from SMS at lowT to SIS at highT appears
suggested. For dynamical simulation in this regime, we have
shown@24# that fairly simple models such as effective pair
potentials give, on average, a reasonable description of the

TABLE I. H dc conductivities as a function of density and tem-
perature. The brackets represent the power of 10. Model PP-DF for
r s51 and TB-DF forr s 5 1.4, 2, and 2.5.

r s n ~cm23) r ~g/cm3) G T ~K! T ~eV! s @(V cm!21]

1.0 1.61~124! 2.675 20 15780 1.36 6.65@14#

10 31580 2.72 6.30@14#

5 63160 5.44 5.00@14#

2 157900 13.61 4.25@14#

1.4 6.02~123! 1.000 40 5690 0.49 2.00@14#

20 11380 0.98 1.85@14#

10 22990 1.96 1.70@14#

5 45510 3.92 1.40@14#

2.0 2.09~123! 0.334 10 15780 1.36 3.50@13#

2.5 1.00~123! 0.166 8 15780 1.36 1.40@13#

TABLE II. Comparison of H dc conductivities in units of
104 V21 cm21 for r s51 and various values ofG. MD refers to the
present results,B to Ref. @17#, PD to Ref.@20#, TCP to Ref.@12#,
and ITMY to Ref. @15#. For the PD case, the first~second! entry
refers to the SIS~SMS! model. For the TCP case, the first~second!
entry refers to without~with! electron symmetry effects.

G sdc

MD B PD TCP IMTY

10 6.3 6.3 5.1;6.2
5 5.0 5.6 4.6;5.5
2 4.3 5.0 4.3;4.9 9;12 12.4FIG. 5. Pair correlation functions forr s51 andG5 2 ~solid line!

and 20~dashed line! in the PP-DF model.

FIG. 6. Pair correlation functions forr s51.4 andG5 5 ~solid
line!, 20 ~dashed line!, 40 ~dot-dashed line! in the TB-DP model.
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basic structure of the plasma as evidenced in the pair-
correlation functions and diffusion coefficients. Therefore,
we might expect that an atomic model perturbed, for ex-
ample, by a hypernetted-chain representation of the structure
would yield reasonable results. In an earlier study@24#, we
found evidence even at this elevated temperature of the tran-
sient formation of small molecular associations. A few per-
cent of the atoms at any one time appeared engaged in such
collections. This effect does not seem to influence the elec-
trical conductivity, a property averaged over many states and
configurations. At the highest temperature, we also compare
with the classical two-component plasma model of Hansen
and McDonald@12# and the ITMY model@15#. Even at this
temperature, the degeneracy parameterQ still lies well be-
low unity ~0.272!, but in a range in which a classical treat-
ment of the electrons might begin to pertain. For all the other
temperatures, the value ofQ lies in a regime where
quantum-mechanical effects become increasingly important.

In Fig. 7, we plot the dc conductivity as a function of
density for a fixed temperature of 1.36 eV~15 870 K! and
compare to the results of Reinholz, Redmer, and Nagel@7#.
Their studies included both fully ionized~dashed line! and
partially ionized~solid line! systems atT515 000 K. Since
the conductivity from the TB-DF model exhibits little sensi-
tivity to temperature between 10 000 and 20 000 K~Table I!,
we have extracted a value forr s51.4 by a simple interpola-
tion. In the LDA simulations, the conductivity drops by
nearly two orders of magnitude forr s increasing from 1 to

2.5. This result lies closer to, though systematically below,
the fully ionized case, being consistent with the large degree
of dissociation we observe. All three models appear to merge
at the higher densities. For the three most dense cases
(r s51, 1.4, and 2!, the frequency-dependent electrical con-
ductivity rises asv approaches zero. However, the behavior
for r s52.53 changes, becoming almost flat forv from 0.2
a.u. into the origin. This behavior closely resembles that of
liquid carbon@42#.

To summarize, we have presented a study of the behavior
of the electrical conductivity as a function of density and
temperature over an important regime for a hot, dense hydro-
gen plasma. We tested models of varying sophistication from
density functional to simple pair potentials. The conductivi-
ties display general metallic properties of decreasing magni-
tude for increasing temperature at a fixed density.
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